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The Liapunov exponents of two-dimension anharmonic oscillator systems are 
studied through numerical calculations. The result shows that the systems consist 
of regular and irregular regions in phase space in the classical limit. The 
corresponding quantum systems are investigated. The distribition P(s) of 
spacings between adjacent energy levels indicates a corresponding transition 
from Poisson-like distribution to Wigner-like distribution. P(s) is dependent on 
the total irregular fraction of phase space. 

1. INTRODUCTION 

The onset of chaos in nonintegrable conservative classical systems of 
few degrees of freedom is by now well characterized (Casati and Ford, 
1979). There has been considerable interest in determining whether the 
corresponding quantum systems carry a signature of classical chaos. The 
statistical properties of the spectra of quantum systems have been found to 
be a significant measure for the degree of integrability of a chaotic system 
in its classical limit. Several useful statistical measures have been introduced. 
The most important ones are the distribution of energy level spacings and 
A 3 statistic measuring short- and long-range correlations of the spectral 
sequence, respectively (Berry and Tabor, 1977; Casati, 1985; Seligman and 
Verbaarschot, 1985). Strongly chaotic systems in quantum mechanics give 
rise to the spectral statistics of the Gaussian orthogonal ensemble of matrices. 

It has been argued by Percival (1978) that in the semiclassical limit a 
spectrum should consist of regular and irregular parts that are associated 
with the classical regular and irregular regions in phase space. The level 
spacing distribution of a completely regular system assumes a Poisson-like 
form in the semiclassical limit (Berry and Tabor, 1977), and a completely 
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irregular system shows a Wigner-like level spacing distribution. A mixture 
of these two distributions has been obtained (Berry and Robnik, 1984) for 
systems in which the corresponding classical system has regions of both 
regularity and irregularity. The distribution is 

P(q, s)=exp[-(1-q)s-�88 (1.1) 

where 

R(z) = 1 -  exp(J~rz 2) erfc(�89 

There is a parameter q~[0,  1]. When q =  1.0 the distribution is the 
Wigner distribution P(s)=�89188 for q=0 .0  it is the Poisson 
distribution, P(s)= exp(-s) .  It is of interest to obtain the parameter q. 
For a Hamiltonian system of two coupled quartic oscillators 

H =�89 Y2)+4kX2y2 (1.2) 

the quantum mechanical values qqm are obtained by a least-squares fit 
of the nearest neighbor energy level spacing distribution (Zimmermann 
et al., 1986). From the classical mechanics point of view, it is the Liouville 
measure of the irregular region divided by the measure of the energy shell 
(Meyer et al., 1984) 

q=[fdyS(H(y)-E)x(y)] /[ Idy6(H(y)-E)  ] (1.3) 

For some Hamiltonian system it is convenient to get the fraction q with a 
method suggested by Meyer (1986). 

In the present paper we study the Hamiltonian system 

H = 1 2 2 y2 c~' ~(Px+ Py+ X2+ )+-~(aX4+by4+2cX2y 2) (1.4) 

With some parameters a, b, and c, we calculate the nearest energy level 
spacing distribution to get qqrn and study the Liapunov exponents for its 
corresponding classical system to obtain qc~. 

In Section 2 we give Liapunov exponents for the Hamiltonian system 
and the fraction of the irregular region in total phase space. In Section 3 
we study the nearest neighbor level spacing distribution of the system and 
qqm from the distribution. In Section 4 we discuss the numerical results. 

2. LIAPUNOV EXPONENTS OF THE HAMILTONIAN SYSTEM 

The Liapunov exponent is the speed with which neighboring trajectories 
separate exponentially. The theory of the Liapunov exponent for Hamil- 
tonian system was introduced by H. D. Meyer. 



M [ y ( t ) , h ]  U-  

Yi is given by the Taylor series 
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For a classical Hamiltonian system of F degrees of freedom, the points 
in 2F-dimensional phase space are 

y(Xl, x2 , . . . ,  xF, Pl, P2 . . . .  , PF) 

The stability matrix for trajectory y( t )  with initial conditions y(0) is defined 
a s  

0%(0 Mij[]l(O), t]-  ( 2 . 1 )  a~,j(0) 
and the Liapunov function as 

A ( t) = t -1 ln[ (2F)-~/ZllM ( t)ll ] (2.2) 

where II'll denotes the Euclidean norm. The maximal Liapunov exponent 
is usually of particular interest. For instance, the set of Liapunov exponents 
of the systems with two degrees of freedom is completely determined by 
the maximal one, 

( 2F)-1/2 dF <- (2F)-'/211MII <- d~ (2.3) 

where dv is the maximal diagonal element of the matrix M, 

a = lira a(t) = av 

The time evolution of the stability matrix is as follows: 

M[y(0), t+ h] = M[y(t) ,  h]M[y(O),  t] (2.4) 

ay, ( t+h)  
Oyj(t) (2.5) 

N h ~ dnyi 
y i ( to+h)  = %(to)+ Y, (2.6) 

n=l n! dt ~ 

For the Hamiltonian system 
t 

H = 1  2 2 )+_~(ax4+by4+ZcxZy2)  (2.7) ~ ( p x + p y + x 2 + y  2 a 

Transform the variables in (2.7) into dimensionless variables 

x ~ x / s ;  y ~ y / s ;  P x ~ P x / s ;  Py-~Py/s;  H ~ H / E ;  a ' - ~ a  (2.8) 

We get each term in the Taylor series; then M[y(0), t] and the Liapunov 
function are calculated. Figure 1 shows the Liapunov function of the 
trajectory started at the point (x=0.0, y=0.2607, Py=0.7211) for the 
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Fig. 1. T he  L i a p u n o v  func t ion  o f  an  i r regular  t rajectory.  The  t ra jec tory  was  s tar ted  at x = 0, 

y = 0.2607 and  py = 0.7211 on the energy  shell E = 25.0 for  the  H a m i l t o n i a n  of  (2.7) with the 

pa rame te r s  a = 3.8, b = 0.7, c = 2.4, a nd  c~ = 0.088. 

Hamil tonian  system with parameters  a = 3.8, b = 0.7, c = 2.4, a = 0.088, and 
E = 25.0. For  integrable systems the L iapunov  function will take the form 
(2t) -~ ln ( l+ f l2 t2 ) .  The Hamil tonian  system o f  (2.7) with a = 1.0, b = 1.0, 
c = 1.0, and a = 0.04 is an integrable system. We calculate the L iapunov  
function o f  a trajectory which started f rom the point  (x- -0 .0 ,  y = 0.1395, 
Py =0.2828)  on the energy shell E = 1.0. When  t is large enough,  A('y, t) 
is a round  0.000035; it is close to zero (see Figure 2). 

~ ( t )  

0.20 

O. I0 

0.0 

5 tO I$ 20 t. 

Fig. 2, The  L iapunov  funct ion  o f  a regular  t ra jec tory  s tar ted at x = 0, y = 011395 an d  py ~ 0.2828 

on the ene rgy  shell E = 1.0 for  the Ha mi l t on i a n  o f  (2.7) with pa rame te r s  a = b = c = 1.0 and  

ot = 0.04. 
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A system is in general not simple regular or irregular, but regular in 
some regions of  phase space and irregular in others. The phase space F 
decomposes into a regular part FR and an irregular part F~, that is, F = 
FR + F~. A measure q is defined as the relative weight of  the irregular part  
of  the energy shell, q = It,  ~rEI/IrEI. The symbol IAI denotes the volume 
of  A. The characteristic .function X for the point y in phase space is 

10 if A ( y ) > O  (2.9) 
X(Y)= if Z ( 7 ) = O  

where A (y)  denotes the maximal Liapunov exponent  of  a trajectory started 
at y. Therefore 

f d,/X(~,)a[H(~,)- E] 
(2.10) q- SdTa[H(,y)_E] 

It is convenient to consider the Poincare surface of the section St ,  

S~={(y, py)+13p,,>O: H(O,y, px, Py)=E} (2.11) 

Corresponding to SE, qs is defined by 

q~--[fsEdydPyX(y)]/fsEdydPy (2.12) 

For the Hamiltonian system (2.7), qs is evaluated numerically. We divided 
the surface of section into small rectangular cells on the energy shell E = 1 .0 ,  

Cu={(y, Py)+[(i-1)hy<y<-iAy,(j-1)APy<Py<-jAPy} (2.13) 

where 

Y = Ymax/50 Py = Py  . . . .  /50  (2.13) 

We calculate the Liapunov exponents of  the trajectories started from points 
in every small cell. We compare  the Liapunov exponents with some threshold 
As, which is chosen from an integrable Hamiltonian system such as the 
Hamiltonian in (2.7) with parameters  a = b = c = 1.0, a =0.04. We take 
As = 0.000035. I f  A-->As, then X(Y)= 1; otherwise, X(Y)= 0. According to 
(2.12), we have qs = 0.941 for the Hamiltonian system in (2.7) with a = 2.5, 
b = 1.0, c = 2.0, a = 0.04, and E = 1.0. It is the result from the classical 
trajectory. When the parameters  are a = 1.02, b = 0.97, c = 0.98, E = 1.0, and 
a -- 0.04 we have qs = 0.187. 
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3. QUANTUM ENERGY SPECTRUM OF HAMILTONIAN 
SYSTEM 

We solve the Hamiltonian system given in (2.7) by a perturbation 
method. Let 

1 + 1 + x=~(al -t- a l ) ,  y = ~ ( a 2  +a2) 

With two-dimensional harmonic oscillator eigenvectors the first-order cor- 
rection to the energy is calculated through a degenerate perturbation method. 
Therefore we get 4560 energy levels. We consider the lower 2500 energy 
levels to study the statistical properties of the spectrum. The nearest energy 
level spacing distribution for a chaotic system is the Wigner-like distribution, 
and for an integrable system the distribution is the Poisson distribution. 
Recently, special attention has been paid to systems that classically show 
a transition between the two limit cases of totally regular and chaotic 
behavior. These systems are intermediate systems. The spectrum for these 
systems is generated by a statistically independent superposition of two 
kinds of distribution, as in (1.1). 

A similar distribution for intermediate systems is used in the present 
paper to compare with the numerical result (_.~._s_s § [ s 1rq2s 2] 

P ( q , s ) =  D 2 D }exp - ( l - q )  D ~-D-~ J (3.1) 

where s is the level spacing, D is a parameter which is concerned with 
mean level spacing, and q is a parameter. We get the value of q from the 

PC~) 
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Fig. 3. Level spacing histogram for the Hamil tonian with parameters a =2.21, b =0.75, 

c = 1.50, and a =0.04. The curve is P(s, qqm) with qqm = 0.50. 



Anharmonic Oscillator 387 

Fig. 4. 
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Level spacing histogram for the Hamiltonian with parameters a =0.95, b = 1.57, 

c = 1.85, and a = 0.04. The curve is P(s, qqm) with qqm = 0.30. 

numerical result by a fit of  the function P(q, s) in the level spacing histogram 
for the distribution found by numerical calculation. The quantum 
Hamiltonian system of (2.7) with parameters a = 2.21, b = 0.75, c = 1.50, 
and a = 0.04 is studied. The nearest energy level spacing distribution is 
shown in Figure 3. The histogram is from numerical results, the curve is 
the distribution (3.1), with q = 0.50, D = 0.75. Here q is obtained from the 
quantum energy spectrum. We denote it as  qqm,  which is less than the 
classical result for the chaotic phase-space fraction qo~ = 0.90. The dotted 
line in Figure 5 shows the A3 statistic for this case, while the straight line 
is A3(L  ) = L/15 and the curve is A3(L  ) = (1/ ' /7 "2) In L-0 .007 .  

When the parameters of  the system are a = 0.95, b = 1.57, c = 1.85, and 
a = 0.04, we have the histogram of the nearest energy level for this system 
shown in Figure 4, which compares it with the curve of P(q, s) in (3.1) with 

Fig. 5. A3(L ) for the Hamiltonian in Figure 3. 
Solid lines are L/15 and the GOE prediction. 
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5.0 

t.O 
i Fig. 6. A3(L ) for the Hamiltonian in Figure 4. Solid 

lines are L/15 and the GOE prediction. 

q = 0.30, D = 0.70. The fitted qqm is less than the q~l = 0.88. The A 3 statistic 
for this case is given in Figure 6. A similar case is studied, as for the system 
with parameters  a = 2.5, b = 1.0, c = 2.0, and a = 0.04 we have qqm = 0.87 
and q~ = 0.941. 

4 D I S C U S S I O N  

When the fraction of  phase space of  the classical Hamiltonian system 
is filled with irregular trajectories, its corresponding quantum system shows 
the property that the nearest energy level distribution is a superposit ion of  
a Wigner distribution and a Poisson distribution with relative weights qqm 

and 1 - qqm, respectively. The value of  qqm given in the energy level spacing 
distribution and qc~ do not coincide. For the system with large qcl the qqm 

of  the corresponding system is less than q~, while for smalll qc~ the quantum 
value qqrn is larger than qd. 
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